Synchronous Chaos in Highdimensional Modular Neural Networks
نویسندگان
چکیده
The relationship between certain types of highdimensional neural networks and low-dimensional prototypical equations (neuromodules) is investigated. The high-dimensional systems consist of finitely many pools containing identical, dissipative and nonlinear single-units operating in discrete time. Under the assumption of random connections inside and between pools, the system can be reduced to a set of only a few equations, which asymptotically in time and system size describe the behavior of every single unit arbitrarily well. This result can be viewed as synchronization of the single units in each pool. It is stated as a theorem on systems of nonlinear coupled maps, which gives explicit conditions on the single unit dynamics and the nature of the random connections. As an application we compare a 2-pool network with the corresponding 2-dimensional dynamics. The bifurcation diagrams of both systems become very similar even for moderate system size (N=50) and large disorder in the connection strengths (50% of mean), despite the fact, that the systems exhibit fairly complex behavior (quasiperiodicity, chaos, coexisting attractors). ∗in: International Journal of Bifurcation and Chaos, 6, 2055 -2067, 1996.
منابع مشابه
Analysis and Diagnosis of Partial Discharge of Power Capacitors Using Extension Neural Network Algorithm and Synchronous Detection Based Chaos Theory
Power capacitors are important equipment of the power systems that are being operated in high voltage levels at high temperatures for long periods. As time goes on, their insulation fracture rate increases, and partial discharge is the most important cause of their fracture. Therefore, fast and accurate methods have great importance to accurately diagnosis the partial discharge. Conventional me...
متن کاملApplication of Radial Basis Neural Networks in Fault Diagnosis of Synchronous Generator
This paper presents the application of radial basis neural networks to the development of a novel method for the condition monitoring and fault diagnosis of synchronous generators. In the proposed scheme, flux linkage analysis is used to reach a decision. Probabilistic neural network (PNN) and discrete wavelet transform (DWT) are used in design of fault diagnosis system. PNN as main part of thi...
متن کاملLinear matrix inequality approach for synchronization of chaotic fuzzy cellular neural networks with discrete and unbounded distributed delays based on sampled-data control
In this paper, linear matrix inequality (LMI) approach for synchronization of chaotic fuzzy cellular neural networks (FCNNs) with discrete and unbounded distributed delays based on sampled-data controlis investigated. Lyapunov-Krasovskii functional combining with the input delay approach as well as the free-weighting matrix approach are employed to derive several sufficient criteria in terms of...
متن کاملمعرفی شبکه های عصبی پیمانه ای عمیق با ساختار فضایی-زمانی دوگانه جهت بهبود بازشناسی گفتار پیوسته فارسی
In this article, growable deep modular neural networks for continuous speech recognition are introduced. These networks can be grown to implement the spatio-temporal information of the frame sequences at their input layer as well as their labels at the output layer at the same time. The trained neural network with such double spatio-temporal association structure can learn the phonetic sequence...
متن کاملSynchronization in complex networks with a modular structure.
Networks with a community (or modular) structure arise in social and biological sciences. In such a network individuals tend to form local communities, each having dense internal connections. The linkage among the communities is, however, much more sparse. The dynamics on modular networks, for instance synchronization, may be of great social or biological interest. (Here by synchronization we m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1996